Jak zainstalować plik APK / APKS / OBB na Androida?
Cześć, Możesz tam pobrać plik APK "Discrete Mathematics" dla Samsung Galaxy Tab 3 V bezpłatnie, wersja pliku apk to 1.0.3 aby pobrać do Samsung Galaxy Tab 3 V po prostu kliknij ten przycisk. To łatwe i gwarancja. Dostarczamy tylko oryginalne pliki APK. Jeśli którykolwiek z materiałów w tej witrynie narusza Twoje prawa, zgłoś nam
Notatki, quiz, blog i filmy z dyskretnej matematyki na kursy inżynierskie. W większości tematów omawiane są diagramy, które ułatwiają naukę. Dotyczą prawie wszystkich ważnych tematów podanych poniżej
Rozdział 1 Teoria zbioru, relacja, funkcja, techniki dowodzenia twierdzeń
1. Ustaw teorię
2. zbiory policzalne i nieprzeliczalne
3. Diagramy Venna
4. dowody ogólnej tożsamości na zestawach Relacja w diagramach Venna
5. rodzaje relacji
6. skład stosunków
7. Relacja równoważności
8. Częściowa relacja porządkowa
9. Funkcja jeden do jednego
10. do i na funkcję
11. Funkcje odwrotne
12. Zasada dziobata
Rozdział 2 Struktury algebraiczne
1. Struktury algebraiczne
2. Grupa abelowa
3. Podgrupy
4. grupa cykliczna
5. Homomorfizm i izomorfizm grup
6. Pierścienie i pola
Rozdział 3 Logika zdań
1. Propozycja
2. Deklaracje warunkowe
3. Tabele prawdy twierdzeń złożonych
4. Logika i operacje bitowe
5. RÓWNOWAŻNOŚĆ EKSPOZYCJI
6. Równoważniki logiczne
7. Konstruowanie nowych równoważników logicznych
8. Predykaty
9. Kwantyfikatory
10. Nieskończone państwa i nieskończone przejścia między państwami
11. Maszyny skończonego stanu jako narzędzia rozpoznające język
Rozdział 4 Teoria wykresów
1. Wprowadzenie wykresów
2. Podstawowe warunki teorii grafów
3. Wykresy wyrówniarki
4. multigraf
5. Wykres izomorficzny
6. ścieżki, cykle, szlaki i obwody
7. Najkrótsze ścieżki
8. Ścieżki i obwody Euleriana i Hamiltona
9. Kolorystyka wykresu
10. numer chromatyczny
11. Homomorfizm i izomorfizm grup
Rozdział 5 Posesje, diagram Hasse'a i kraty
1. Posets, Hasse Diagram
2. zamówiony zestaw
3. Diagramy Hasse'a
4. Zestaw uporządkowany izomorficznie
5. dobrze uporządkowany zestaw
6. własności krat
7. ograniczone i uzupełnione sieci
8. Kombinatoryka
9. Permutacja i kombinacja
10. Twierdzenie dwumianowe
11. Wprowadzenie do zależności cyklicznych i rekursywnych
12. Relacje liniowe z stałymi współczynnikami
13. Rozwiązania homogeniczne